Safeguarding The Future
Environmental engineering applies scientific principles and engineering tools to improve the natural environment, address pollution problems, and ensure environmental sustainability. Environmental engineers provide safe drinking water, treat and dispose of hazardous wastes, clean up contaminated soil and groundwater, and maintain the quality of air, water, and land resources.

Our strong core curriculum provides students with rigorous training in the causes, control, and prevention of environmental contamination and the flexibility to secure their future in an environmental profession. Students learn to understand the fate of environmental contaminants, analysis and design of solutions to real-world environmental problems, and the application of modeling and simulation methods to assess risk and estimate cost.

Active research ensures that the content of the curriculum is constantly renewed and maintained at a technically challenging level and that discovery learning is integrated into the program. Opportunities abound for environmental engineering undergraduates to work with faculty and graduate students in our world-class research program. Roughly two-thirds of our students work as research assistants.

CAREER PATHS:
- Environmental Engineer
- Environmental Compliance
- Water Resources Engineer
- Water/Air Quality Engineer
- Soil Remediation
- Civil Site Engineer
- Engineering Management and more!

GRADUATE SCHOOL FOR:
- Civil Engineering
- Environmental Engineering
- Engineering Management
- Public Policy & Administration
- MBA and more!

CE.UDEL.EDU
Environmental Engineering Curriculum:

To earn a bachelor’s degree, students must complete 126 credits and meet specific requirements as outlined in the online catalog. See UD Catalog for additional details.

FIRST YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGGG 101 - Introduction to Engineering (FYE)</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 103 - General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 241 - Analytic Geometry & Calculus A</td>
<td>4</td>
</tr>
<tr>
<td>CISC 106 - General Computer Science for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Requirement Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 133 - Introduction to Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 104 - General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>MATH 242 - Analytic Geometry & Calculus B</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110 - Seminar in Composition</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Requirement Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>17</td>
</tr>
</tbody>
</table>

SECOND YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 211 - Statics</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 207 - Fundamentals of Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 243 - Analytic Geometry & Calculus C</td>
<td>4</td>
</tr>
<tr>
<td>CIEG 233 - Environmental Engineering Processes</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Requirement Elective 3</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 315 - Probability and Statistics for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BISC 207 - Introductory Biology I</td>
<td>4</td>
</tr>
<tr>
<td>MATH 351 - Engineering Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>CIEG 333 - Thermodynamics for Environmental Engineers</td>
<td>3</td>
</tr>
<tr>
<td>Computer Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>16</td>
</tr>
</tbody>
</table>

THIRD YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 305 - Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CIEG 306 - Fluid Mechanics Lab</td>
<td>1</td>
</tr>
<tr>
<td>CIEG 440 - Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CIEG 444 - Microbiology of Engineered Systems</td>
<td>4</td>
</tr>
<tr>
<td>CIEG 321 - Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Requirement Elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 437 - Water and Wastewater Quality</td>
<td>3</td>
</tr>
<tr>
<td>CIEG 438 - Water and Wastewater Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 410 - Technical Writing*</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 1</td>
<td>3</td>
</tr>
<tr>
<td>Breadth Requirement Elective 5</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>15</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>FALL</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 461 - Senior Design Project (DLE & Capstone)</td>
<td>2</td>
</tr>
<tr>
<td>CIEG 436 - Processing, Recycl., Mgt. of Solid Wastes</td>
<td>3</td>
</tr>
<tr>
<td>CIEG 337 - Environmental Engineering Lab</td>
<td>3</td>
</tr>
<tr>
<td>Surface Water Course</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRING</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEG 461 - Senior Design Project (DLE)</td>
<td>2</td>
</tr>
<tr>
<td>Air Pollution Course</td>
<td>3</td>
</tr>
<tr>
<td>Groundwater Course</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 3</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits:</td>
<td>14</td>
</tr>
</tbody>
</table>

Satisfies upper level COE breadth requirement